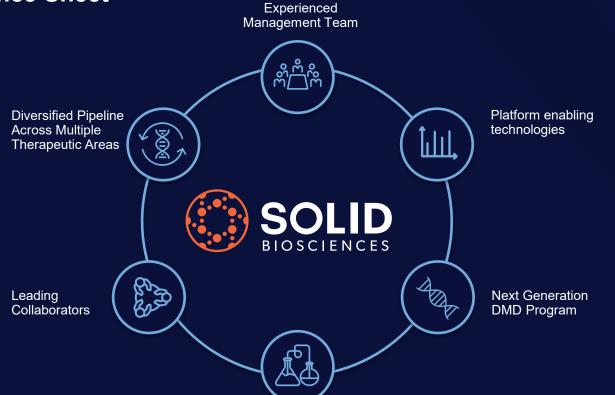
Corporate Presentation

August 2024



Forward Looking Statement

This presentation contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995, including statements regarding future expectations, plans and prospects for the company; the ability to successfully achieve and execute on the company's goals, priorities and achieve key clinical milestones; the company's SGT-003 program, including expectations for additional CTA filings, site activations, expanded clinical development, production of additional SGT-003 GMP batches, initiation and enrollment in clinical trials, dosing, and availability of clinical trial data; the company's expectations for submission of an IND for SGT-501 and to submit additional INDs by the end of 2026; the cash runway of the company and the sufficiency of the Company's cash, cash equivalents, and available-for-sale securities to fund its operations; and other statements containing the words "anticipate," "believe," "continue," "could," "estimate," "expect," "intend," "may," "plan," "potential," "predict," "project," "should," "target," "would," "working" and similar expressions. Any forward-looking statements are based on management's current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in, or implied by, such forward-looking statements. These risks and uncertainties include, but are not limited to, risks associated with the company's ability to advance SGT-003, SGT-501, AVB-401 and other programs and platform technologies on the timelines expected or at all; obtain and maintain necessary and desirable approvals from the FDA and other regulatory authorities; replicate in clinical trials positive results found in preclinical studies and early-stage clinical trials of the company's product candidates; obtain, maintain or protect intellectual property rights related to its product candidates; compete successfully with other companies that are seeking to develop Duchenne and other neuromuscular and cardiac treatments and gene therapies; manage expenses; and raise the substantial additional capital needed, on the timeline necessary, to continue development of SGT-003, SGT-501, AVB-401 and other candidates, achieve its other business objectives and continue as a going concern. For a discussion of other risks and uncertainties, and other important factors, any of which could cause the company's actual results to differ from those contained in the forward-looking statements, see the "Risk Factors" section, as well as discussions of potential risks, uncertainties and other important factors, in the company's most recent filings with the Securities and Exchange Commission. In addition, the forward-looking statements included in this presentation represent the company's views as of the date hereof and should not be relied upon as representing the company's views as of any date subsequent to the date hereof. The company anticipates that subsequent events and developments will cause the company's views to change. However, while the company may elect to update these forward-looking statements at some point in the future, the company specifically disclaims any obligation to do so.

This presentation contains estimates and other statistical data made by independent parties and by us relating to market size and other data about our industry. This data involves a number of assumptions and limitations, and you are cautioned not to give undue weight to such data and estimates. In addition, projections, assumptions and estimates of our future performance and the future performance of the markets in which we operate are necessarily subject to a high degree of uncertainty and risk.

Industry Leading Platform, Partners, Pipeline, Management, and Strong Balance Sheet

Leading Edge

CMC Capabilities

\$190.3M* as of 6/30/24

*Cash, Cash Equivalents and Available For Sale Investments

Clinical Stage Genetic Medicines Company Targeting Neuromuscular and Cardiac Diseases

Program	Indication	Research / Discovery	Preclinical	Phase 1/2	Milestone (anticipated)	Worldwide Rights
Neuromuscular						
SGT-003	Duchenne				FIH Data Q4 2024 ¹	\otimes
AVB-202-TT	FA					\otimes

Cardiac						
SGT-501	RYR2-Mediated CPVT				IND 1H 2025	\otimes
	CASQ2-Mediated CPVT					\otimes
AVB-401	BAG3-Mediated DCM					\otimes
SGT-601	TNNT2 DCM					\otimes
SGT-701	RBM20					\otimes

Platform				
Capsid Library ²			FIH Data Q4 2024 ³	\otimes

Notes: In 2020, Solid entered into a collaboration agreement with Ultragenyx for the development of UX810, a next generation Duchenne construct comprised of Solid's proprietary nNOS microdystrophin and Ultragenyx's Pinnacle™ PCL manufacturing platform for use with AAV8 and Clade E variants thereof. Solid has the option to co-fund collaboration programs in return for a profit share or increased royalty payments at proof-of-concept. 1. Initial safety and 90-day expression and functional data; 2. Capsid Library currently in NHPs, Mice and Pigs; 3. AAV-SLB101

Q2 2024 Corporate Update:

First-in-Human Duchenne Clinical Trial Initiated & Multiple INDs Expected Through 2026

PATIENT DOSING COMMENCED IN SGT-003 PHASE 1/2 INSPIRE DUCHENNE TRIAL	First-in-human evaluation of SGT-003 for treatment of Duchenne Muscular Dystrophy; initial data expected Q4 2024
SGT-003 WELL TOLERATED IN INITIAL PATIENTS DOSED *	Based on safety seen to date, Solid plans to expand INSPIRE DUCHENNE with additional sites in the U.S., Canada, and Europe – additional GMP batch production planned to support expansion
TARGETING SUBMISSION OF 3-4 INDs BY END OF 2026	Strategically selecting neuromuscular and cardiac diseases; CPVT IND submission expected 1H 2025
STRONG PROGRESS IN CAPSID LIBRARY OUT-LICENSING	AAV-SLB101, the proprietary capsid used in SGT-003, is now being used by 10 academic labs and 1 corporation, with additional negotiations underway

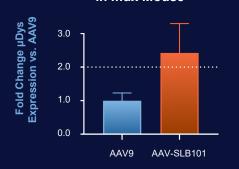
Neuromuscular Lead Program

Duchenne Muscular Dystrophy (Duchenne)

SGT-003 Utilizes an Optimized Transgene, Next Generation Capsid and Improved Manufacturing Process

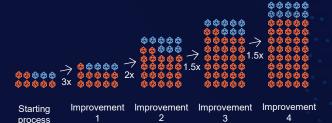
Next-Generation Construct Has Shown Promising Results in Preclinical Testing

Transgene


Solid's microdystrophin uniquely includes the nNOS binding domain, potentially important for prevention of activity-induced ischemia and associated muscle injury

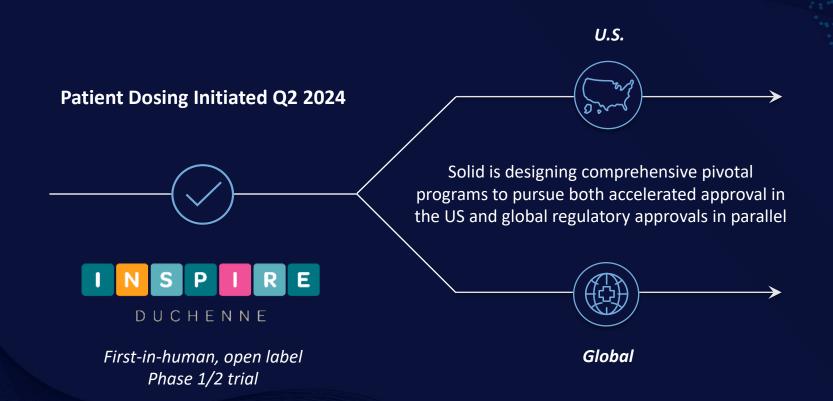
Capsid

Rationally designed capsid with the goal of improving skeletal muscle tropism

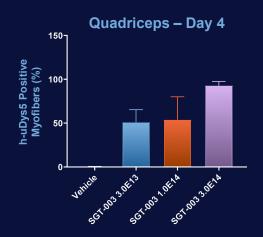

Robust µDys Expression in mdx Mouse

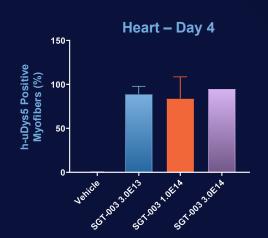
Manufacturing Process

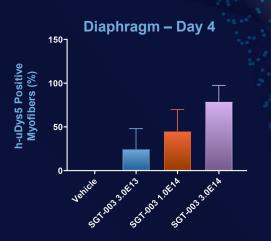
Current yields and full to empty ratios have potential to significantly reduce COGS for Duchenne and other gene therapies


Full/Empty and Yield Improvements

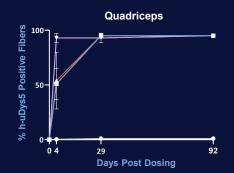
Full Capsids Empty Capsids

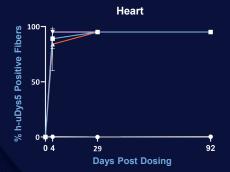


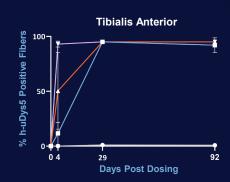

INSPIRE DUCHENNE SGT-003 Phase 1/2 Trial Dosing Initiated: Distinct U.S. and Global Regulatory Pathways Anticipated

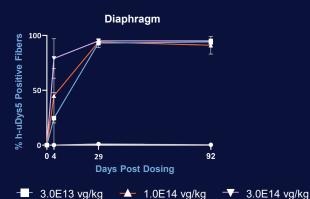


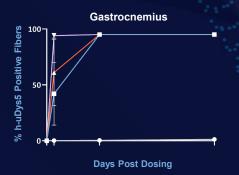
Rapid AAV-SLB101 Transduction and Expression in mdx Mouse Model by Day 4



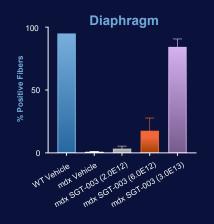

Observations

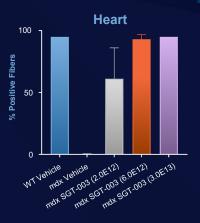

Robust microdystrophin expression levels, as assessed by h-uDys5+ myofibers in quadriceps, heart, and diaphragm, were evident by Day 4 post-AAV-SLB101 administration

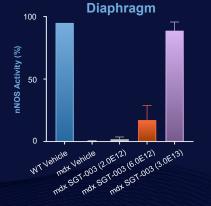

SGT-003 Showed Sustained Microdystrophin Expression in mdx Mouse Model

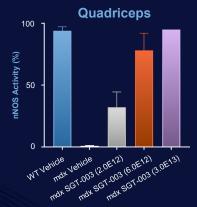


Vehicle




High Microdystrophin Expression and nNOS Activity in Multiple Tissues at Low Doses in mdx Mouse Model


Microdystrophin



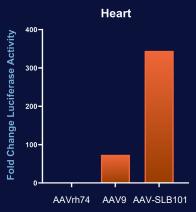
nNOS Activity

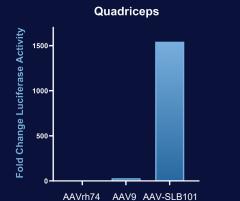
SGT-003 With AAV-SLB101 Capsid Demonstrated Superior Muscle Tropism vs AAV9

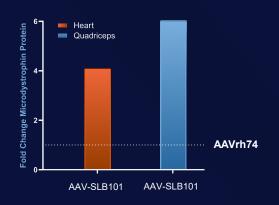
Positive Biodistribution and Expression Data Have the Potential to Translate Into Better Efficacy

AAV-SLB101 Exhibited Superior Protein Expression Profiles vs AAV-rh74 Across Muscle Tissues of NHPs and Mice

AAV-SLB101 vs AAV9 & AAV-rh74

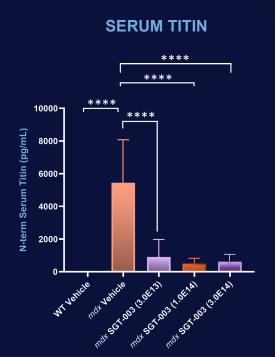

CK8-Luciferase activity in mouse tissues at a low dose (2.0E12 vg/kg)^a

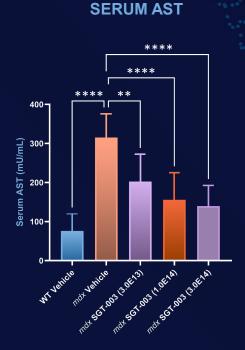



AAV-SLB101 vs AAV-rh74

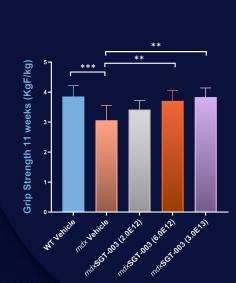
CK8-Microdystrophin protein expression by LC/MS in NHP tissues at clinical dose (1.0E14 vg/kg)^b

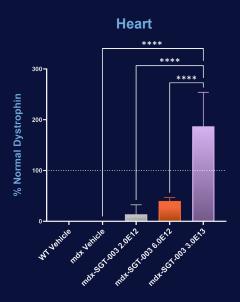


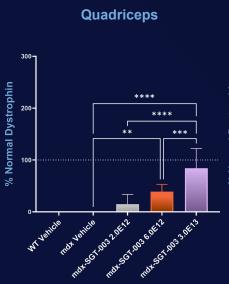

Superior transgene expression profile of AAV-SLB101 in mouse and NHP muscle tissues justified candidate selection and IND-enabling studies with the AAV-SLB101-based therapeutic candidate SGT-003

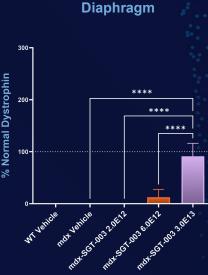


Improved Serum Biomarkers of Muscle Membrane Integrity Seen in SGT-003-Treated *mdx* Mice at Doses ≥3.0E13 vg/kg




Significant Microdystrophin Expression and Functional Efficacy Observed in mdx Mouse Model at Low Doses (>6E12)



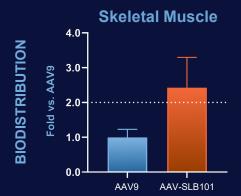


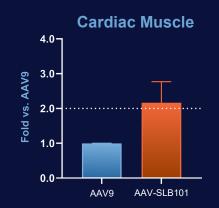
Mass Spectrometry - % Normal Dystrophin

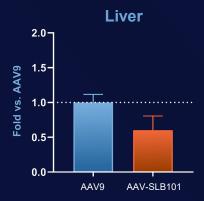
p<0.005, *p<0.0005, ****p<0.00005

Dotted line = 100% dystrophin threshold in adult skeletal muscle

N=10 per group




NHPs Administered AAV-SLB101 Showed Improved Biodistribution in Cardiac and Skeletal Muscle With Decreased Hepatic Transduction as Compared to AAV9



- Increased biodistribution to skeletal & cardiac muscle correlated with increased transgene expression*

NHP IV Administration of AAV-SLB101 With Constitutive Promoter and Reporter Gene

© 2024 Solid Biosciences

^{*}Average fold differences calculated from the five skeletal muscle tissues sampled, three regions of cardiac tissue sampled, and the single liver sample.

GLP Toxicology NHP Study Showed SGT-003 Was Well Tolerated

NHP GLP TOX Study

3-month study

2 treatment groups (1E14 vg/kg & 3E14 vg/kg)

n = 3/group

> 60 tissues evaluated including skeletal muscle, liver, brain

FINDINGS

No pathology findings: organ weight changes, macroscopic, or microscopic

Liver enzyme levels comparable to vehicle at target clinical dose

NHPs dosed at 3x planned first-in-human dose level (1E14 vg/kg)

INSPIRE DUCHENNE Clinical Trial Design: Ongoing SGT-003 Phase 1/2 Study

First-in-Human Open-Label, Single-Dose Study to Enroll a Minimum of 6 Patients

Objective

Design

Endpoints

Primary Objective

 To investigate the safety and tolerability of a single intravenous 1E14vg/kg dose of SGT-003

Secondary Objective

 To investigate the efficacy of a single intravenous dose of SGT-003

INSPIRE DUCHENNE Clinical Trial Design: Ongoing SGT-003 Phase 1/2 Study

First-in-Human Open-Label, Single-Dose Study to Enroll a Minimum of 6 Patients

Objective

Design

Endpoints

Study includes **2 cohorts** based on age and weight at the time of signing the informed consent:

- Cohort 1: Participants 4 to < 6 years of age, ≤25 kg
- Cohort 2: Participants 6 to < 8 years of age, <30 kg

All participants are required to be on a stable dose of at least 0.5 mg/kg/day of oral daily prednisone or 0.75 mg/kg/day deflazacort for ≥12 weeks prior to entering the study

All participants must be ambulant and have a diagnosis of DMD with a documented dystrophin gene mutation confirmed by genetic testing at screening.

INSPIRE DUCHENNE Clinical Trial Design: Ongoing SGT-003 Phase 1/2 Study

First-in-Human Open-Label, Single-Dose Study to Enroll a Minimum of 6 Patients

Objective

Design

Endpoints

Primary Endpoint

Incidence of treatment-emergent adverse events (AEs) through Day 360

Secondary Endpoints

- Change from baseline of microdystrophin protein levels at Day 90 and 360
- Change from baseline in the NSAA score at Day 360
- Change from baseline in stride velocity 95th percentile (SV95C) at Day 360

Cardiac Lead Program

Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT)

CPVT

Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT): a Fatal Disorder in a Young Population

Affected Population

PREVALENCE

1:10,000 people¹

ESTIMATED

~33,000 patients in the US

Cause

CASQ2 & RYR2 proteins regulate cardiac calcium (Ca²⁺), important for electrical conduction and cardiac contraction / relaxation

Postulated Mechanism: Mutations in RYR2 or CASQ2 genes disrupt Ca²⁺ release into the cytoplasm triggering abnormal contraction and relaxation leading to arrhythmias

X

Solid Approach

AAV-delivered, CASQ2 transgene with cardiac-selective promoter designed for safe expression utilizing optimized transfert transfection manufacturing process

Clinical Presentation and Unmet Need

SIGNS & SYMPTOMS

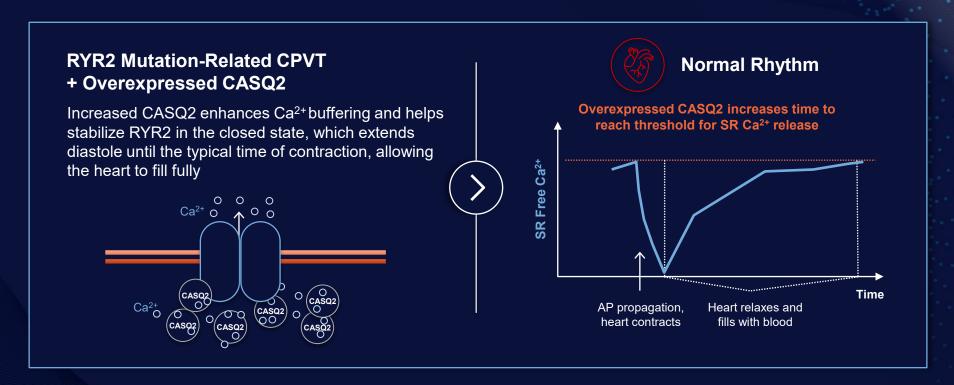
- Most commonly presents as syncope events or cardiac arrest
- Quality of life severely impacted. Risk of spontaneous arrhythmias and or sudden death
- Poor Prognosis: ~40% mortality within 10 years of diagnosis²

AGE OF ONSET

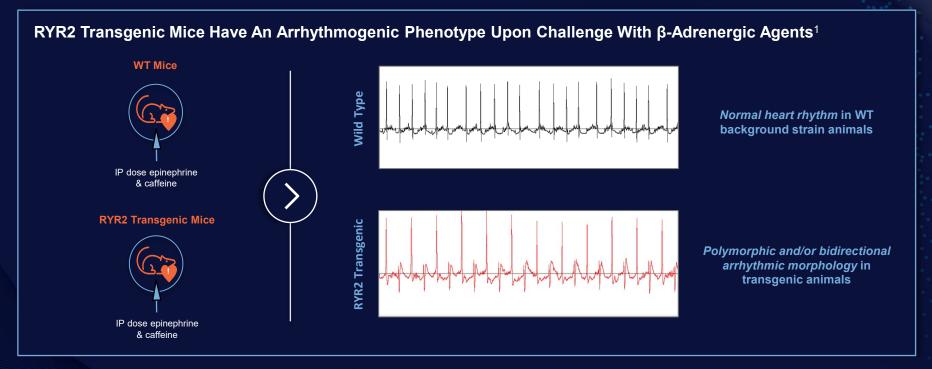
Typically identified in younger patients (mean onset between 7-12 y/o)

STANDARD OF CARE

No available targeted therapies to address underlying disease cause

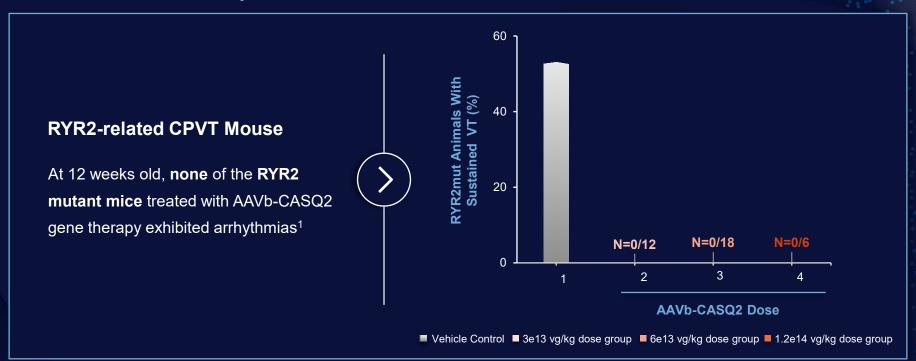

Rationale for CASQ2 Overexpression in RYR2 CPVT

CASQ2 Overexpression Leads to Increased Ca²⁺ Buffering to Counteract Ca²⁺ Sensitivity of RYR2 Mutant


RYR2 Mutation-Related CPVT **Arrhythmia** Mutations in RYR2 make the channel more sensitive to SR Ca²⁺ levels, resulting in early release of Ca²⁺ **RYR2** mutations lower threshold into the cytoplasm and the heart contracting when it for SR Ca2+ release Ca²⁺ should be filling with blood in diastole Free Ca²⁺ O O O O O O SR Time AP propagation, Heart relaxes but has less time to fill with blood heart contracts

Rationale for CASQ2 Overexpression in RYR2 CPVT (cont.)

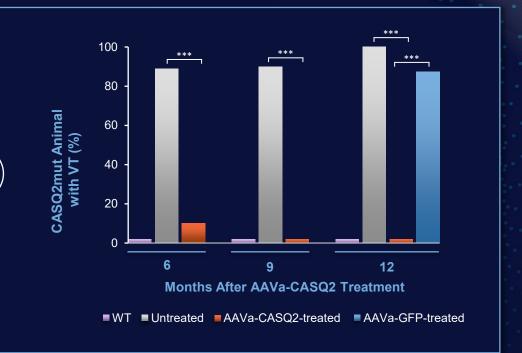
CASQ2 Overexpression Leads to Increased Ca²⁺ Buffering to Counteract Ca²⁺ Sensitivity of RYR2 Mutant


RYR2 CPVT Transgenic Mouse Model Used To Support Proof of Concept For AAV Gene Delivery of Human CASQ2

Elimination of Arrhythmias in Multiple Disease State Models

Data Suggests CASQ2 Augmentation Was Well Tolerated & Highly Protective in RYR2- & CASQ2-Related CPVT Arrhythmias

Elimination of Arrhythmias in Multiple Disease State Models



Data Suggests CASQ2 Augmentation Was Well Tolerated & Highly Protective in CASQ2 & RYR2 CPVT Arrhythmias

CASQ2-related CPVT Mouse

Significantly fewer **CASQ2 mutant mice** experienced arrhythmias 6-12 months after AAVa-CASQ2 gene therapy¹

40-50% transduction, achieved in both neonates and adult mice, prevented propagation of triggered beats¹

^{***}P<0.001, AAVa-CASQ2-treated vs untreated and AAVa-CASQ2-treated vs AAVa-GFP-treated

^{1.} Denegri, et al. 2014

Pipeline Programs

BAG3

BAG3

Attractive Indication, Clear Mechanistic Rationale, High Unmet Need & Significant Market Size

Affected Population

PREVALENCE

2-4% DCM Cases¹

ESTIMATED

~29,000 patients in the US

ESTIMATED

 \sim 33,000 patients in the EU

Cause

BAG3 mutations lead to reduced BAG3 protein leading to dilated cardiomyopathy (DCM)

Postulated mechanism: Decreased BAG3 protein leads to heat shock protein dysfunction and a build-up of dysfunctional proteins in the sarcomere, causing myofilament damage and heart failure

Solid Approach

Delivering a codon optimized BAG3 gene with a cardiacselective promoter utilizing transient transfection manufacturing process

Clinical Presentation and Unmet Need

SIGNS & SYMPTOMS

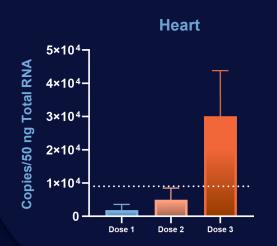
- Most common presentation is dyspnea (but can be sudden death)
- Activities of daily life are severely impacted
- Adverse long-term prognosis, approximately 25% at one year and ~50% at five years experience severe cardiac event, intervention, or death¹

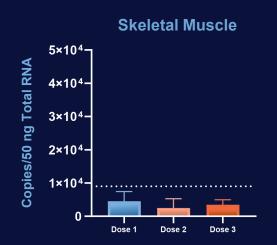
AGE OF ONSET

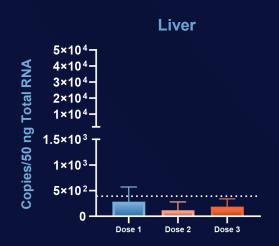
 DCM caused by mutations in BAG3 is characterized by high penetrance in carriers >40 years of age and a high risk of progressive heart failure^{1,2}

STANDARD OF CARE

No approved therapies address underlying cause of disease

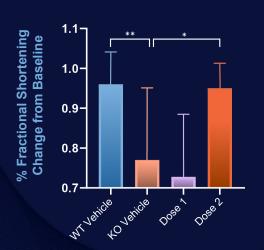


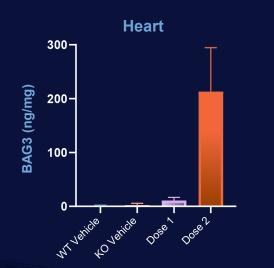

Cardiac-Selective Expression of Human BAG3 in Cardiac-Specific BAG3 Mouse Model



Expression of Human Transgene mRNA Is Below Endogenous BAG3 mRNA Levels in Off-Target Tissues

BAG3 Cardiac-Specific Knockout (cKO) Mouse IV Administration of AAV with Cardiac Promoter and Human BAG3 Transgene


Exploratory Efficacy Study Suggests Improved Cardiac Function in BAG3 cKO Mouse Model


Mouse Data Support Continued Development of AAV-Mediated Gene Delivery of Human BAG3

cKO of BAG3

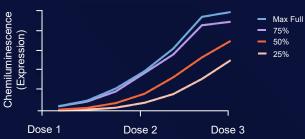
Dose-dependent Improvement in Cardiac Function

Dose-dependent Expression of Human BAG3 Protein

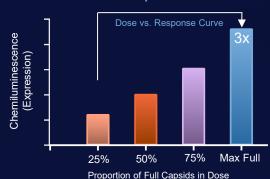
Human BAG3 Protein Localized to Z-line in Cardiomyocytes

Green= BAG3; Red= a-actinin

Platform Technologies



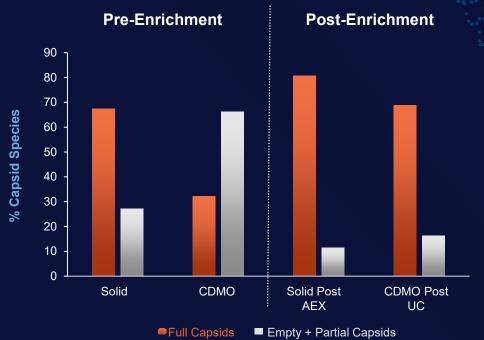
Full/Empty Capsid Ratio Can Impact Transduction and Expression of AAV **Products**


~3-Fold Difference in Chemiluminescence (Expression) Based on Full/Empty Percentage

- Transducing C2C12 cells with an AAV luciferase construct allowed chemiluminescence to act as a readout of expression
- Keeping ddPCR titer constant and serially diluting with empty capsids demonstrated that expression was impacted at constant dose
- Maximizing the percentage of full capsids has the potential to improve expression and safety of an AAV product

AAV DS Protein Expression vs Percent Full Capsids (Titer Match Load)^a

AAV DS Protein Expression vs Percent Full Capsids^a


Solid's Manufacturing Platform Has Potential to Challenge Industry Yields and Redefine Full/Empty Capsid Purity

Significant Increase in Yields and Continued Improvements in Full/Empty Ratios Seen at Research Scales*

Yield & Quality Performance

Solid's pre-enrichment capsids

(full vs. empty + partial) superior to leading CDMOs

Anticipated Near Term Milestones

	Program	Milestone (anticipated)	Timing			
		Patient dosing commenced	⊘			
Neuromuscular	SGT-003 for Duchenne	Submit multiple CTAs for global trial (already authorized in Canada)	Ongoing			
		Initial phase 1/2 data (safety, microdystrophin expression & functional data) ¹	Q4 2024			
O a villa a	00T 504 (0D)/T	Preclinical studies in NHP and mouse	Ongoing			
Cardiac	SGT-501 for CPVT	Planned submission of RYR2 IND	1H 2025			
Capsids	AAV-SLB101	First-in-human data	Q4 2024			
	Capsid Library (multiple capsids)	Complete rounds of NHP, mouse, and pig studies	Ongoing			
Pipeline	Multiple Pipeline Assets	BAG3 preclinical studies, TNNT2 NHP & mouse studies, RBM20 preclinical work	Ongoing			

